333312 (33)

BE (3 ${ }^{\text {rd }}$ Semester)
Examination, April-May 2021
Branch : CSE, IT, Mechatronics

DIGITAL ELECTRONICS \& LOGIC DESIGN

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : Part (a) is compulsory. Attempt any two parts
from (b), (c) and (d).
Q. 1. (a) (i) Convert a gray code 10011011 into
binary. 1
(ii) Convert $(3 C 9 A)_{16}$ into decimal. 1

(2)

(b) Simplify the following Boolean function by using Quine McCluskey method. 7

$$
f(A, B, C, D)=\sum m(0,1,2,8,10,11,14,15)
$$

(c) Simplify following Bollean function using K-map also draw the logic gate circuit. 7

$$
\begin{aligned}
f(A, B, C, D)= & \sum m(0,2,3,5,6,7,8,9) \\
& +d(10,11,12,13,14,15)
\end{aligned}
$$

(d) Simplify Boolean function in sum of product.

$$
\text { (i) }(X+Z)(Z \bar{Y}+X Z)(\bar{X} Z+\bar{Y})
$$

(ii) $[A \bar{B}(C+B D)+\bar{A} \bar{B}] C$ 3
Q. 2. (a) Explain Demux. 2
(b) Design a BCD to Excess 3 code converter using AND, OR, EXOR.
(c) Implement the following Boolean function
using 4: 1 MUX. 7
$f(A, B, C, D)=\sum m(0,1,2,4,6,9,12,14)$
(d) Explain $B C D$ adder with diagram. 7
Q. 3. (a) What do you mean by flip flop? 2
(b) Convert SR FF into JK. Also draw logic diagram.
(c) Draw the circuit of RTL using NOR gate \& explain it.
(d) Explain race around condition in JK F/F. Suggest a suitable modification in JK F/F to overcome this problem.
Q. 4. (a) Write two applications of shift register. 2
(b) Explain shift register with its classifications. 7
(c) Design divide by 6 counter using T F/F. Write state table \& reduce the expression using K Map. Also draw logic diagram.

(4)

(d) Explain ripple counter (2 bit) with logic diagram \& timing diagram using JK FF. 7
Q. 5. (a) Difference between RAM \& ROM. 2
(b) Discuss the successive approximation method for A/D conversion. 7
(c) Implement the following Boolean function using PLA. 7
$\mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,1,3,4)$
$\mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma(1,2,3,4,5)$
(d) Explain ROM \& draw 8×4 diode matrix ROM with the help of decoder (3×8). 7

